Risk Markers of Insulin Resistance
Risk Markers of Insulin Resistance
Background To directly compare traditional lipid ratios (total cholesterol [TC]/high density lipoprotein cholesterol [HDL-C], non-HDL-C/HDL-C, low density lipoprotein cholesterol [LDL-C]/HDL-C, and triglycerides [TG]/HDL-C), apolipoprotein B (apoB)/apolipoprotein A-I (apoA-I) ratio, visceral adiposity index (VAI), lipid accumulation product (LAP), and the product of TG and fasting glucose (TyG) for strength and independence as risk factors for insulin resistance (IR).
Methods We conducted a cross-sectional analysis of 7629 Chinese adults using data from the China Health and Nutrition Survey 2009.
Results For all lipid ratios (traditional lipid ratios and apoB/apoA-I), among both sexes, TG/HDL-C explained the most additional percentage of variation in HOMA-IR (2.9% in men, and 2.3% in women); for all variables of interest, the variability in HOMA-IR explained by VAI and TG/HDL-C were comparable; TyG had the most significant association with HOMA-IR, which explained 9.1% for men and 7.8% for women of the variability in HOMA-IR. Logistic regression analysis showed the similar patterns. Receiver operating characteristic (ROC) curve analysis showed that, among both sexes, TG/HDL-C was a better discriminator of IR than apoB/apoA-I; the area under the ROC curve (AUC) for VAI (0.695 in men and 0.682 in women) was greater than that for TG/HDL-C (AUC 0.665 in men and 0.664 in women); TyG presented the greatest value of AUC (0.709 in men and 0.711 in women).
Conclusion The apoB/apoA-I performs no better than any of the traditional lipid ratios in correlating with IR. The TG/HDL-C, VAI and TyG are better markers for early identification of IR individuals.
Abstract and Introduction
Abstract
Background To directly compare traditional lipid ratios (total cholesterol [TC]/high density lipoprotein cholesterol [HDL-C], non-HDL-C/HDL-C, low density lipoprotein cholesterol [LDL-C]/HDL-C, and triglycerides [TG]/HDL-C), apolipoprotein B (apoB)/apolipoprotein A-I (apoA-I) ratio, visceral adiposity index (VAI), lipid accumulation product (LAP), and the product of TG and fasting glucose (TyG) for strength and independence as risk factors for insulin resistance (IR).
Methods We conducted a cross-sectional analysis of 7629 Chinese adults using data from the China Health and Nutrition Survey 2009.
Results For all lipid ratios (traditional lipid ratios and apoB/apoA-I), among both sexes, TG/HDL-C explained the most additional percentage of variation in HOMA-IR (2.9% in men, and 2.3% in women); for all variables of interest, the variability in HOMA-IR explained by VAI and TG/HDL-C were comparable; TyG had the most significant association with HOMA-IR, which explained 9.1% for men and 7.8% for women of the variability in HOMA-IR. Logistic regression analysis showed the similar patterns. Receiver operating characteristic (ROC) curve analysis showed that, among both sexes, TG/HDL-C was a better discriminator of IR than apoB/apoA-I; the area under the ROC curve (AUC) for VAI (0.695 in men and 0.682 in women) was greater than that for TG/HDL-C (AUC 0.665 in men and 0.664 in women); TyG presented the greatest value of AUC (0.709 in men and 0.711 in women).
Conclusion The apoB/apoA-I performs no better than any of the traditional lipid ratios in correlating with IR. The TG/HDL-C, VAI and TyG are better markers for early identification of IR individuals.