Fungal Levels in the Home and Allergic Rhinitis by 5 Years of Ag

109 39
Fungal Levels in the Home and Allergic Rhinitis by 5 Years of Ag
Studies have repeatedly demonstrated that sensitization to fungi, such as Alternaria, is strongly associated with allergic rhinitis and asthma in children. However, the role of exposure to fungi in the development of childhood allergic rhinitis is poorly understood. In a prospective birth cohort of 405 children of asthmatic/allergic parents from metropolitan Boston, Massachusetts, we examined in-home high fungal concentrations (>90th percentile) measured once within the first 3 months of life as predictors of doctor-diagnosed allergic rhinitis in the first 5 years of life. In multivariate Cox regression analyses, predictors of allergic rhinitis included high levels of dust-borne Aspergillus [hazard ratio (HR) = 3.27; 95% confidence interval (CI), 1.50-7.14], Aureobasidium (HR = 3.04; 95% CI, 1.33-6.93), and yeasts (HR = 2.67; 95% CI, 1.26-5.66). The factors controlled for in these analyses included water damage or mild or mildew in the building during the first year of the child's life, any lower respiratory tract infection in the first year, male sex, African-American race, fall date of birth, and maternal IgE to Alternaria >0.35 U/mL. Dust-borne Alternaria and nonsporulating and total fungi were also predictors of allergic rhinitis in models excluding other fungi but adjusting for all of the potential confounders listed above. High measured fungal concentrations and reports of water damage, mold, or mildew in homes may predispose children with a family history of asthma or allergy to the development of allergic rhinitis.

Studies have repeatedly demonstrated that sensitization to fungi, such as Alternaria, is strongly associated with allergic rhinitis and asthma in children (Arshad et al. 2001; Downs et al. 2001; Halonen et al. 1997; Nolles et al. 2001). However, the role of exposure to fungi, measured in environmental samples, in the development of childhood allergic rhinitis is poorly understood. Allergic rhinitis affects an estimated 20-40 million people in the United States alone, and the incidence is increasing. Allergic rhinitis has been associated with snoring, sleep apnea, and sleep disturbances in children (Camhi et al. 2000; Corbo et al. 2001; Scharf and Cohen 1998). The prevalence of symptoms of allergic rhinoconjunctivitis ranged between 15 and 25% among children 13-14 years of age who lived in the United States or the United Kingdom (International Study of Asthma and Allergies in Childhood 1998). A recent study documented that 93% of adolescents with allergic asthma also have allergic rhinitis. The diagnosis of allergic rhinitis preceded asthma in up to 64% of patients with both diseases (Kapsali et al. 1997). Because allergic rhinitis is a common disease that lessens quality of life and is associated with significant morbidity, determining environmental exposures associated with the development of allergic rhinitis is of great public health importance.

In a prospective birth-cohort study of children with parental history of asthma or allergies, we assessed environmental fungal exposure (culturable fungi in house air and dust samples) and evaluated whether high fungal levels were independently associated with doctor-diagnosed allergic rhinitis in the first 5 years of life.

Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.